English, asked by omkarppatil, 1 year ago

prove that√ 1 - cos A /1 + cos A =cosec A - cot A​

Answers

Answered by pratyush4211
6

 \sqrt{ \frac{1 - cos \theta}{1 + cos \theta} }  = cosec \theta - cot \theta \\  \\

Taking LHS

 \sqrt{ \frac{1 - cos \theta}{1 + cos \theta} }  \\  \\

Rationalise It with 1-cosA

 \sqrt{ \frac{(1 - cos \theta)(1 - cos \theta}{(1 + cos \theta)(1 - cos \theta)} }   \\  \\  \sqrt{ \frac{(1 - cos \theta) {}^{2} }{1  - cos {}^{2}  \theta} }

We know

sin²A+Cos²A=1

sin²A=1-cos²A

 \sqrt{ \frac{(1 - cos   \theta)  {}^{2}  }{ sin  {}^{2}   \theta }  }  \\  \\  \sqrt{ (\frac{(1 - cos \theta) }{sin  \theta} ) {}^{2} }  \\  \\  (\frac{1 - cos \theta}{sin \theta} ) {}^{2 \times  \frac{1}{2} }   \\  \\  \frac{1 - cos \theta}{sin \theta}  \\  \\  \frac{1}{sin \theta}  -  \frac{cos \theta}{sin \theta}

We know

 \frac{1}{sin \theta}  = cosec \theta \\  \\  \frac{cos \theta}{sin \theta}  = cot \theta

So,

 \frac{1}{sin \theta}  -  \frac{cos \theta}{sin \theta}  \\  \\ cosec \theta - cot \theta

Hence Proved

LHS =RHS

Similar questions