Math, asked by adarsh2710, 2 months ago

Prove that:
√1+cos A/√1-cosA
= cosecA+cotA.​

The question is from trigonometric identities from class 10.

Attachments:

Answers

Answered by Anonymous
1

Given

 \sf :   \implies \sqrt{ \dfrac{1 + cosA}{1 - cosA} }  = cosecA + cotA

To Prove

 \sf  : \implies \: cosecA + cotA

Now Take

 \sf :   \implies \sqrt{ \dfrac{1 + cosA}{1 - cosA} }

Rationalize The Denominator

 \sf    : \implies \sqrt{ \dfrac{1 + cosA}{1 - cosA}  \times  \dfrac{1 + cosA}{1 + cosA} }

 \sf  : \implies \:  \sqrt{ \dfrac{(1 + cosA)^{2} }{(1 - cos ^{2}A) } }

We Know that

 \sf  : \implies \: sin {}^{2} x + cos {}^{2} x = 1

 :  \implies \sf \: sin^{2} x = 1 - cos {}^{2} x

Put the value

 \sf   : \implies \sqrt{ \dfrac{(1 + cosA) {}^{2} }{sin^{2} A} }

 \sf  : \implies \dfrac{1 + cosA}{sinA}

 \sf  : \implies \:  \dfrac{1}{sinA}  +  \dfrac{cosA}{sinA}

 \sf  : \implies \: cosecA + cotA

Hence Proved

Similar questions