prove that 1 + Cos A by sin square A is equal to 1 by 1 - cos squared
Answers
➡
▶Prove that 1 + Cos A by sin square A is equal to 1 by 1 - cos squared.
➡
SOLVING LEFT HAND SIDE ⤵⤵⤵
(1 + CosA) / Sin²A
=> (1 + CosA) / (1 - Cos²A)
[ By the identity :- Sin²A = 1 - Cos²A ]
=> (1 + CosA) / { (1)² - (CosA)² }
=> (1 + CosA) / (1 - CosA)(1 + CosA)
[ By the identity :- (a-b)(a+b) = a² - b² ]
=> 1 / (1 - CosA)
Now , LHS = RHS
____________________________
Answer:
1+cosA/sin^2a=1/1-cosa
1+cosA/sin^2a=1/1-cosaLHS=1+cosA/sin^2a
1+cosA/sin^2a=1/1-cosaLHS=1+cosA/sin^2a BY USING TRIGONOMETRIC IDENTITY
1+cosA/sin^2a=1/1-cosaLHS=1+cosA/sin^2a BY USING TRIGONOMETRIC IDENTITY
1+cosA/sin^2a=1/1-cosaLHS=1+cosA/sin^2a BY USING TRIGONOMETRIC IDENTITY
1+cosA/sin^2a=1/1-cosaLHS=1+cosA/sin^2a BY USING TRIGONOMETRIC IDENTITY
1+cosA/sin^2a=1/1-cosaLHS=1+cosA/sin^2a BY USING TRIGONOMETRIC IDENTITY
1+cosA/sin^2a=1/1-cosaLHS=1+cosA/sin^2a BY USING TRIGONOMETRIC IDENTITY =1+cosA/sin^2a
1+cosA/sin^2a=1/1-cosaLHS=1+cosA/sin^2a BY USING TRIGONOMETRIC IDENTITY =1+cosA/sin^2a =1+cosA /1-cos^2A
1+cosA/sin^2a=1/1-cosaLHS=1+cosA/sin^2a BY USING TRIGONOMETRIC IDENTITY =1+cosA/sin^2a =1+cosA /1-cos^2A =1+cosA/(1+cosA)(1-cosA)
1+cosA/sin^2a=1/1-cosaLHS=1+cosA/sin^2a BY USING TRIGONOMETRIC IDENTITY =1+cosA/sin^2a =1+cosA /1-cos^2A =1+cosA/(1+cosA)(1-cosA) =1-cosA
1+cosA/sin^2a=1/1-cosaLHS=1+cosA/sin^2a BY USING TRIGONOMETRIC IDENTITY =1+cosA/sin^2a =1+cosA /1-cos^2A =1+cosA/(1+cosA)(1-cosA) =1-cosA
Hence proved