Math, asked by sprayag843, 1 month ago

. Prove that 1/(Cos A + Sin A -1)+1/( CosA + sin A + 1 )=cosec A + sec A​

Answers

Answered by abhinavmike85
44

Given:

 \dfrac{1}{\cos \:A + \sin A - 1}  +  \dfrac{1}{\cos \:A + \sin A + 1}   = \cosec \:A + \sec \: A  \\

\\\\

Solution:

Taking LHS:

 \dfrac{1}{\cos \:A + \sin A - 1}  +  \dfrac{1}{\cos \:A + \sin A + 1} \\

\\\\

Now taking LCM,

\\

\large{⇒} \dfrac{\cos \:A + \sin A +1 +\cos A \:  + \sin \: A - 1}{(\cos \:A + \sin A - 1) (\cos \:A + \sin A  +  1) }

\\

\large{⇒}  \dfrac{2\cos \:A +2\sin \:A  }{((\cos A \:  + \sin \: A)  -  1)((\cos A \:  + \sin \: A)  +  1)}

\\

\large{⇒}\dfrac{2(\cos \:A +\sin \:A ) }{((\cos A \:  + \sin \: A)^{2}   -  1^{2} )}

 \\

\large{⇒} \dfrac{2(\cos \:A +\sin \:A ) }{(\cos^{2}  A \:  + \sin ^{2}  \: A  + 2\sin A\: \cos \: A-  1)}

\\

\large{⇒} \dfrac{2(\cos \:A +\sin \:A ) }{1 + 2\sin A\: \cos \: A-  1)}

 \\

\large{⇒}\dfrac{2(\cos \:A +\sin \:A ) }{2(\sin A\: \cos \: A)}

\\

\large{⇒}\dfrac{(\cos \:A +\sin \:A ) }{( \sin A\: \cos \: A)}

\\

\large{⇒} \dfrac{\cos \:A}{(\sin A\: \cos \: A)}+\dfrac{\sin \:A}{(\sin A\: \cos \: A)}

 \\

\large{⇒}\dfrac{1}{\sin A}  +  \dfrac{1}{ \cos \: A}

 \\

\large{⇒} \cosec A\: +  \sec \: A

\\

LHS = RHS

Proved

\\\\

Formulas Used:

\sf {\sin}^2 A + {\cos}^2 A = 1

\sf {(a+b)}^2 = a^2 + b^2 + 2ab

Similar questions