English, asked by malayabhue42, 6 months ago

Prove that
1-Cos A+SinA/1+cosA+sinA=tan(A/2)​

Answers

Answered by Anonymous
2

Answer:

hope it helps you.....❤️❤️

Attachments:
Answered by ItzSweetyHere
3

Hey there!

Your answer is as follows

Answer with explanation:

To prove:      \frac{1+sin A-cosA}{1+sinA+cosA}  = tan(\frac{A}{2} )

Previous Knowledge:

1.    sinA= 2sin(\frac{A}{2} )

2.   cos A = 2 cos^{2} (\frac{A}{2} ) - 1

3.   cosA =1- 2sin^{2}(\frac{A}{2})

4.  \frac{sin\alpha }{cos \alpha }  = tan \alpha

Proof:

LHS   =>   \frac{1+sin A-cosA}{1+sinA+cosA}

Applying (1),(2),(3) we get

LHS   =          \frac{1+2sin(\frac{A}{2})cos(\frac{A}{2})-1+2sin^{2}(\frac{A}{2})    }{1+2sin(\frac{A}{2} ) cos(\frac{A}{2} )+2cos^{2}(\frac{A}{2})-1  }

LHS   =         \frac{2sin(\frac{A}{2} )cos(\frac{A}{2} )+2sin^{2}(\frac{A}{2} ) }{2sin(\frac{A}{2} )cos(\frac{A}{2} )+2cos^{2}(\frac{A}{2} )}

LHS   =         \frac{2sin(\frac{A}{2} )cos(\frac{A}{2} )+sin(\frac{A}{2} ) }{2sin(\frac{A}{2} )cos(\frac{A}{2} )+cos(\frac{A}{2} )}

Canceling the like terms we get,

LHS   =          \frac{sin(\frac{A}{2}) }{cos(\frac{A}{2} )}

From (4),

LHS  =  tan(\frac{A}{2} )   = RHS

Hence proved!

Thanks!

Similar questions