Math, asked by anmolsathi7676, 1 month ago

prove that 1-cos a/ sina = sin a /1+ cos a​

Answers

Answered by MysticSohamS
0

Answer:

hey here is your answer

pls mark it as brainliest pls

Step-by-step explanation:

To  \: Prove  =  \\  \frac{1 - cos.a}{sin.a}  =  \frac{sin.a}{1 + cos.a}  \\  \\ so \: let \: then \:  \\ LHS =  \frac{1 - cos.a}{sin.a}  \\ \:  \\  RHS =  \frac{sin.a}{1 + cos.a}

so \: considering \: LHS \\  =  \frac{1 - cos.a}{sin.a}  \\ so \: conjugate \: of \: 1 - cos.a \: is \: 1 + cos.a \\ so \: by \: applying \: conjugate \: method \\ we \: get \\  =  \frac{1 - cos.a}{sin.a}  \times  \frac{1 + cos.a}{1 + cos.a}  \\  \\  =  \frac{ 1 - cos {}^{2} a}{(1 + cos.a).sin \: a}  \\  \\  =  \frac{sin {}^{2}a }{sin \: a(1 + cos \: a)}  \\  \\  =  \frac{sin.a}{1 + cos \: a}

hence \: LHS =  RHS \\ thus \: proved

Similar questions