Math, asked by Priya2110, 3 months ago

prove that 1+cos alpha +sin alpha ÷ 1+cos alpha - sin alpha = 1+sin alpha ÷ cos alpha ​​

Answers

Answered by anindyaadhikari13
5

Required Answer:-

Given To Prove:

  • (1 + cos α + sin α)/(1 + cos α - sin α) = (1 + sin α)/cos α

Proof:

Taking LHS,

\sf \dfrac{1 +  \cos( \alpha ) +  \sin( \alpha )  }{1 +  \cos( \alpha ) -  \sin( \alpha ) }

Multiplying numerator and denominator by cos α, we get,

\sf =  \dfrac{ \cos( \alpha ) \{1 +  \cos( \alpha ) +  \sin( \alpha )  \} }{  \cos( \alpha ) \{1 +  \cos( \alpha ) -  \sin( \alpha ) \} }

\sf =  \dfrac{ \cos^{2} ( \alpha )  +  \cos( \alpha ) \{1+  \sin( \alpha )  \} }{  \cos( \alpha ) \{1 +  \cos( \alpha ) -  \sin( \alpha ) \} }

We know that,

 \sf \implies { \sin}^{2}( \alpha ) +  \cos^{2} ( \alpha )  = 1

 \sf \implies   \cos^{2} ( \alpha )  = 1 -  { \sin}^{2}( \alpha )

Putting the value of cos²α here, we get,

\sf =  \dfrac{( 1 -  { \sin}^{2}  ( \alpha ))  +  \cos( \alpha ) \{1+  \sin( \alpha )  \} }{  \cos( \alpha ) \{1 +  \cos( \alpha ) -  \sin( \alpha ) \} }

Now, simplify 1 - sin²α using identity a² - b² = (a + b)(a - b).

\sf =  \dfrac{( 1  + { \sin} ( \alpha )(1 -  \sin( \alpha ))   +  \cos( \alpha ) \{1+  \sin( \alpha )  \} }{  \cos( \alpha ) \{1 +  \cos( \alpha ) -  \sin( \alpha ) \} }

Taking 1 + sin α as common, we get,

\sf =  \dfrac{1  + { \sin} ( \alpha ) \{(1 -  \sin( \alpha ) + \cos( \alpha ) \}}{  \cos( \alpha ) \{1 +  \cos( \alpha ) -  \sin( \alpha ) \} }

\sf =  \dfrac{(1  + { \sin} ( \alpha ) ) \cancel{\{(1+ \cos( \alpha ) -  \sin( \alpha )  \}}}{  \cos( \alpha ) \cancel{ \{1 +  \cos( \alpha ) -  \sin( \alpha ) \} }}

 \sf =  \dfrac{1 +  \sin( \alpha ) }{ \cos( \alpha ) }

= RHS (Proved)

Therefore,

\sf \leadsto \dfrac{1 +  \cos( \alpha ) +  \sin( \alpha )  }{1 +  \cos( \alpha ) -  \sin( \alpha ) }  =  \dfrac{1 +  \sin( \alpha ) }{ \cos( \alpha ) }

Basic Formula Used:

  • sin²α + cos²α = 1
  • a² - b² = (a + b)(a - b)
Similar questions