Math, asked by surya1972ngmailcom, 5 months ago

Prove that (1+ cos pieby10) (1+cos3pieby10) (1+cos7pieby10) (1+cos9pieby10)=1 by16

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

(1 +  \cos( \frac{\pi}{10} ) )(1 +  \cos( \frac{3\pi}{10} ) )(1 +  \cos( \frac{7\pi}{10} ) )(1 +  \cos( \frac{9\pi}{10} ) ) \\

 = 2 \cos^{2} ( \frac{\pi}{20} ). 2 \cos^{2} ( \frac{3\pi}{20} ).2 \cos^{2} ( \frac{7\pi}{20} ).2 \cos^{2} ( \frac{9\pi}{20} ) \\

 = 16.\cos^{2} ( \frac{\pi}{20}) \cos^{2} ( \frac{3\pi}{20} )\cos^{2} (  \frac{\pi}{2}  - \frac{3\pi}{20} ) \cos^{2} (  \frac{\pi}{2}  - \frac{\pi}{20} ) \\

 = 16.\cos^{2} ( \frac{\pi}{20} )\cos^{2} ( \frac{3\pi}{20} )\sin^{2} ( \frac{\pi}{20} )\sin^{2} ( \frac{3\pi}{20} ) \\

 = 4\cos^{2} ( \frac{\pi}{20} )\sin^{2} ( \frac{\pi}{20} ).4\cos^{2} ( \frac{3\pi}{20} )\sin^{2} ( \frac{3\pi}{20} ) \\

 =  \sin^{2} ( \frac{\pi}{10} )  \sin^{2} ( \frac{3\pi}{10} )  \\

 = ( \frac{ \sqrt{5} - 1 }{4} . \frac{ \sqrt{5}  + 1}{4} )^{2}

 = ( \frac{5 - 1}{16}) ^{2}

 =(  \frac{1}{4} )^{2}

 =  \frac{1}{16}

Similar questions