Math, asked by kmadhan831, 10 months ago

prove that 1+cos/sin-sin/1+cos=2cot​

Answers

Answered by ridhima009988
9

Answer:(1+cos)^2 - sin^2/sin(1+cos)

1+cos^2+2cos-sin^2/sin(1+cos)

Cos^2+cos^2+2cos/sin(cos+1) (bcoz 1-sin^2 = cos^2)

2Cos(cos+1)/sin(cos+1)

2cos/sin

2cot

Step-by-step explanation:

Answered by harendrachoubay
16

\dfrac{1+\cos \theta}{\sin \theta} -\dfrac{\sin \theta}{1+\cos \theta} =2\cot \theta, proved.

Step-by-step explanation:

To prove that, \dfrac{1+\cos \theta}{\sin \theta} -\dfrac{\sin \theta}{1+\cos \theta} =2\cot \theta.

L.H.S. = \dfrac{1+\cos \theta}{\sin \theta} -\dfrac{\sin \theta}{1+\cos \theta}

To take LCM of denominator part, we get

=\dfrac{(1+\cos \theta)^2-\sin^2 \theta}{\sin \theta(1+\cos \theta)}

Using the algebraic identity,

(a+b)^{2} =a^{2} +2ab+b^2

=\dfrac{1+\cos^2 \theta+2\cos \theta-\sin^2 \theta}{\sin \theta(1+\cos \theta)}

Using the trigonometric identity,

\sin^2 A+\cos^2 A=1

\sin^2 A=1-\cos^2 A

=\dfrac{1+\cos^2 \theta+2\cos \theta-(1-\cos^2 \theta)}{\sin \theta(1+\cos \theta)}

=\dfrac{1+\cos^2 \theta+2\cos \theta-1+\cos^2 \theta}{\sin \theta(1+\cos \theta)}

=\dfrac{2\cos^2 \theta+2\cos \theta}{\sin \theta(1+\cos \theta)}

=\dfrac{2\cos \theta(\cos \theta+1)}{\sin \theta(1+\cos \theta)}

=\dfrac{2\cos \theta}{\sin \theta}

= 2\cot \theta

= R.H.S., proved.

Thus, \dfrac{1+\cos \theta}{\sin \theta} -\dfrac{\sin \theta}{1+\cos \theta} =2\cot \theta, proved.

Similar questions