Math, asked by sugunanikhil06, 2 months ago

prove that: √1+cos theta/1-cos theta = cosec theta+ cot theta​

Answers

Answered by chaubeyayush10
2

Answer:

hii how are you this is your answer. see

Step-by-step explanation:

seee the photo

Attachments:
Answered by vaishnavi1177
0

Step-by-step explanation:

 LHS= \sqrt{ \frac{1 + cosθ}{1 -   cosθ} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \: \\ \\    = \sqrt{ \frac{(1 + cosθ)(1 + cosθ)}{(1 - cosθ)(1 + cosθ)} }  \\ \\   =  \sqrt{ \frac{ {(1 + cosθ)}^{2} }{ {(1)}^{2}  -  {(cosθ)}^{2} } } \:  \:   \: \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \\  \\  =   { \frac{1 + cosθ}{ \sqrt{sin^{2}θ } } }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \\   =  \frac{1 + cosθ}{sinθ} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ \\   =  \frac{1}{sinθ}  +  \frac{cosθ}{sinθ}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  = cosecθ + cotθ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ = RHS \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence proved.

Similar questions