Math, asked by bajpaiatharva8598, 1 year ago

prove that:
1+cos theta/1-costheta=tan^2 theta/(sec theta-1)^2

Answers

Answered by ayushchoubey
82
your answer is☝️☝️☝️☝️
Attachments:
Answered by parmesanchilliwack
123

Answer:

To prove :

\frac{1+cos\theta}{1- cos \theta}=\frac{tan^2 \theta}{(sec\theta - 1)^2}

L.H.S :

\frac{1+cos\theta}{1- cos \theta}

=\frac{1+cos\theta}{1- cos \theta}\times \frac{1-cos\theta}{1- cos \theta}

=\frac{1-cos^2\theta}{(1- cos \theta)^2}

=\frac{1-\frac{1}{sec^2\theta}}{(1-\frac{1}{sec\theta})^2}

=\frac{sec^2 \theta - 1}{(sec\theta - 1)^2}

Since, sec² x - 1 = tan² x

=\frac{tan^2\theta}{(sec\theta - 1)^2}

= R.H.S.

Hence, proved.

Similar questions