Prove that 1+ cos theta - sin^2theta/
sin theta(1 + cos theta)
= cot theta
Answers
Answered by
9
To prove :-
(1 + cos∅ - sin²∅)/[sin∅(1 + cos∅)] = cot∅
LHS :-
= (1 + cos∅ - sin²∅)/[sin∅(1 + cos∅)]
= (cos∅ + 1 - sin²∅)/[sin∅(1 + cos∅)]
using identity sin²∅ + cos∅ = 1 ➡ cos²∅ = 1 - sin²∅
= (cos∅ + cos²∅)/[sin∅(1 + cos∅)]
taking cos∅ as common in the numerator
= [cos∅(1 + cos∅)]/[sin∅(1 + cos∅)]
by canceling (1 + cos∅), we get
= cos∅/sin∅
= cot∅ (since cot∅ = cos∅/sin∅)
➡ cot∅ = cot∅
LHS = RHS. hence proved!
Similar questions