Math, asked by smithashetty, 11 months ago

prove that 1+cos theta /sin theta -sin theta /1+cos theta =2 cot theta ​

Answers

Answered by nkb5
28

answer is this fully explained so plz follow me I'll also follow you OK and mark this as brainanist..

Don't forget to mark this answer as brainanist

Attachments:
Answered by jitumahi435
10

\dfrac{1+\cos \theta}{\sin \theta} -\dfrac{\sin \theta}{1+\cos \theta} =2\cot \theta, proved.

Step-by-step explanation:

To prove that: \dfrac{1+\cos \theta}{\sin \theta} -\dfrac{\sin \theta}{1+\cos \theta} =2\cot \theta.

L.H.S. = \dfrac{1+\cos \theta}{\sin \theta} -\dfrac{\sin \theta}{1+\cos \theta}

To take LCM of denominator part, we get

= \dfrac{(1+\cos \theta)^2-\sin^2 \theta}{\sin \theta(1+\cos \theta)}

Using the algebraic identity,

(a+b)^{2} = a^{2} + 2ab + b^{2}

= \dfrac{1+2\cos \theta+\cos^2 \theta-\sin^2 \theta}{\sin \theta(1+\cos \theta)}

Using the trigonometric identity,

\sin^2 A+\cos^2 A = 1

\cos^2 A = 1 - \sin^2 A

= \dfrac{(1-\sin^2 \theta)+2\cos \theta+\cos^2 \theta}{\sin \theta(1+\cos \theta)}

= \dfrac{\cos^2 \theta+2\cos \theta+\cos^2 \theta}{\sin \theta(1+\cos \theta)}

= \dfrac{2\cos^2 \theta+2\cos \theta}{\sin \theta(1+\cos \theta)}

Taking 2\cos \theta numerator as common, we get

= \dfrac{2\cos \theta(1+\cos \theta)}{\sin \theta(1+\cos \theta)}

= \dfrac{2\cos \theta}{\sin \theta}

Using the trigonometric identity,

\cot A = \dfrac{\cos A}{\sin A}

= 2\cot \theta

= R.H.S. proved.

Thus, \dfrac{1+\cos \theta}{\sin \theta} -\dfrac{\sin \theta}{1+\cos \theta} =2\cot \theta, proved.

Similar questions