Math, asked by Twilight4315, 4 months ago

prove that 1+cos theta / sin theta -sin theta /1+cos theta = 2 cot theta

Answers

Answered by santoshpukar4
1

Answer:

use the sin theta = cos theta2

Answered by Anonymous
75

Step-by-step explanation:

\huge\underline{\overline{\mid{\bold{\blue{\mathcal{Question:-}}\mid}}}}

Prove that

\huge \frac{1 +  \cos(x) }{ \sin(x) }  -  \frac{ \sin(x) }{1 +  \cos(x) }  = 2 \cot(x)

\huge\underline{\overline{\mid{\bold{\blue{\mathcal{Hint:-}}\mid}}}}

  • We will make the LHS equal to the RHS by taking the LCM of LHS and by using few Trigonometric identities .

\underline{\overline{\mid{\bold{\blue{\mathcal{Trigonometric \ identities:-}}\mid}}}}

  • sin^2A + cos^2A = 1

  • sec^2A - tan^2A = 1

  • cosec^2A = 1 + cot^2A

\huge\underline{\overline{\mid{\bold{\blue{\mathcal{Required \ Solution:-}}\mid}}}}

\rightarrow\small\bf LHS:-

 \huge  \frac{1 +  \cos(x) }{ \sin(x) }  -  \frac{ \sin(x) }{1 +  \cos(x) }

  • Taking the LCM we have;

\huge =  \frac{(1 +  { cos \: x )}^{2}  -  { \sin}^{2}x }{ sin \: x(1 +  cos \: x) }

  • Using the identity of (a+b)^2 = a^2 + b^2 + 2ab we have;

\huge \frac{1 +  {cos}^{2} x + 2cos \: x -  {sin}^{2}x }{sin \: x(1 +  cos \: x)}

\mathcal{\green{Now,}}

we know that

1 -  {sin}^{2} x =  {cos}^{2} x

  • Using this identity we have;

\huge \frac{ {cos}^{2} x + 2cos \: x + (1 - sin {}^{2}x) }{sin \: x(1 +  cos \: x) }

\huge \frac{ {cos}^{2} x + 2cos \: x +  {cos}^{2}x }{sin \: x(1 + cos \: x)}

\huge =  \frac{2 {cos}^{2} x + 2cos \: x}{sin \: x(1 + cos \: x)}

\huge =  \frac{2 \: cos \: x(cos \: x + 1)}{sin \: x(1 + cos \: x)}

\huge =  \frac{2 {cos} \: x(1 + cos \: x) }{sin \: x(1 + cos \: x)}

\huge =  \frac{2 \: cos \: x}{sin \: x}  = 2cot \: x

  • because cos x / sin x = cot x.

\rightarrow\small\bf RHS

□ Hence, proved.

\mathfrak{\red{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ @MissTranquil}}

_______________________________________________

Note:-

  • Here, theta is taken as 'x'.
Similar questions