Math, asked by SaranshSingh, 1 year ago

Prove that ——
1-cos theta/sin theta=tan theta/2

Answers

Answered by mridulbansal
14
let theta=©
so we need to prove that
1-cos©/sin©=tan©/2
RHS= TAN©/2
sin©/cos©/2
sin©/2cos©
Answered by Pitymys
72

First use the identities,

 1-\cos \theta = 2\sin^2(\frac{\theta}{2}) \\<br />\sin \theta =2\sin(\frac{\theta}{2}) \cos(\frac{\theta}{2})

So,

 LHS=\frac{1-\cos \theta }{\sin \theta}\\<br />LHS=\frac{2\sin^2(\frac{\theta}{2}) }{2\sin(\frac{\theta}{2}) \cos(\frac{\theta}{2})  }\\<br />LHS=\frac{\sin(\frac{\theta}{2}) }{ \cos(\frac{\theta}{2})  }\\<br />LHS=\tan(\frac{\theta}{2})  =RHS

The proof is complete.

Similar questions