prove that 1 + cos theta + sin theta upon 1 + cos theta minus sin theta is equals to 1 + sin theta upon cos theta
nitthesh7:
please refer the question properly... my friend
Answers
Answered by
16
HELLO DEAR,
![\frac{1 + \cos \alpha + \sin \alpha }{1 + \cos \alpha - \sin \alpha } \\ = > \frac{ \cos \alpha (1 + \cos \alpha + \sin \alpha ) }{ \cos \alpha (1 + \cos \alpha - \sin \alpha ) } \\ = > \frac{( \cos\alpha + \cos ^{2} \alpha + \cos \alpha \sin \alpha ) }{ \cos \alpha (1+ \cos \alpha - \sin \alpha ) } \\ = > \frac{( \cos\alpha +1 - \sin ^{2} \alpha + \cos \alpha \sin \alpha ) }{ \cos \alpha (1+ \cos \alpha - \sin \alpha ) } \\ = > \frac{ (1 + \sin\alpha ) (1 - \sin \alpha ) + \cos \alpha (1 + \sin \alpha ) }{ \cos \alpha (1 + \cos \alpha - \sin \alpha ) } \\ = > \frac{(1 + \sin \alpha )(1 - \sin \alpha + \cos \alpha ) }{ \cos \alpha (1 - \sin \alpha + \cos \alpha) } \\ = > \frac{1 + \sin \alpha }{ \cos \alpha } \frac{1 + \cos \alpha + \sin \alpha }{1 + \cos \alpha - \sin \alpha } \\ = > \frac{ \cos \alpha (1 + \cos \alpha + \sin \alpha ) }{ \cos \alpha (1 + \cos \alpha - \sin \alpha ) } \\ = > \frac{( \cos\alpha + \cos ^{2} \alpha + \cos \alpha \sin \alpha ) }{ \cos \alpha (1+ \cos \alpha - \sin \alpha ) } \\ = > \frac{( \cos\alpha +1 - \sin ^{2} \alpha + \cos \alpha \sin \alpha ) }{ \cos \alpha (1+ \cos \alpha - \sin \alpha ) } \\ = > \frac{ (1 + \sin\alpha ) (1 - \sin \alpha ) + \cos \alpha (1 + \sin \alpha ) }{ \cos \alpha (1 + \cos \alpha - \sin \alpha ) } \\ = > \frac{(1 + \sin \alpha )(1 - \sin \alpha + \cos \alpha ) }{ \cos \alpha (1 - \sin \alpha + \cos \alpha) } \\ = > \frac{1 + \sin \alpha }{ \cos \alpha }](https://tex.z-dn.net/?f=++%5Cfrac%7B1+%2B++%5Ccos+%5Calpha++%2B++%5Csin+%5Calpha++%7D%7B1+%2B++%5Ccos+%5Calpha+-++%5Csin+%5Calpha++++%7D+++%5C%5C++%3D+%26gt%3B+++%5Cfrac%7B+%5Ccos+%5Calpha+%281+%2B++%5Ccos+%5Calpha++%2B++%5Csin+%5Calpha+%29+%7D%7B+%5Ccos+%5Calpha+%281+%2B++%5Ccos+%5Calpha+-++%5Csin+%5Calpha++%29+%7D++%5C%5C++%3D++%26gt%3B+%5Cfrac%7B%28+%5Ccos%5Calpha++%2B+%5Ccos+%5E%7B2%7D++%5Calpha++%2B++%5Ccos+%5Calpha+++%5Csin+%5Calpha+%29+%7D%7B+%5Ccos+%5Calpha+%281%2B++%5Ccos+%5Calpha+-++%5Csin+%5Calpha+++%29+%7D++%5C%5C++%3D++%26gt%3B++%5Cfrac%7B%28+%5Ccos%5Calpha++%2B1+-++%5Csin+%5E%7B2%7D++%5Calpha++%2B++%5Ccos+%5Calpha+++%5Csin+%5Calpha+%29+%7D%7B+%5Ccos+%5Calpha+%281%2B++%5Ccos+%5Calpha+-++%5Csin+%5Calpha+++%29+%7D+%5C%5C++%3D++%26gt%3B++%5Cfrac%7B++%281+%2B++%5Csin%5Calpha+%29+%281+-++%5Csin+%5Calpha+%29+%2B++%5Ccos+%5Calpha+%281+%2B++%5Csin+%5Calpha+%29+%7D%7B+%5Ccos+%5Calpha+%281+%2B++%5Ccos+%5Calpha++-++%5Csin+%5Calpha+%29++%7D++%5C%5C++%3D++%26gt%3B++%5Cfrac%7B%281+%2B++%5Csin+%5Calpha+%29%281+-++%5Csin+%5Calpha++%2B++%5Ccos+%5Calpha+%29+++%7D%7B+%5Ccos+%5Calpha+%281+-++%5Csin+%5Calpha++%2B++%5Ccos+%5Calpha%29+++%7D++%5C%5C++%3D++%26gt%3B++%5Cfrac%7B1+%2B++%5Csin+%5Calpha+%7D%7B+%5Ccos+%5Calpha++%7D+)
I HOPE ITS HELP YOU DEAR,
THANKS
I HOPE ITS HELP YOU DEAR,
THANKS
Answered by
6
solution is in this attachment.
hope it helps you !!
@Rajukumar111
hope it helps you !!
@Rajukumar111
Attachments:
![](https://hi-static.z-dn.net/files/d2e/6502464d6d2c5e76803cc03da49ade11.jpg)
Similar questions