Math, asked by prashantireddy4382, 1 year ago

Prove that: √1+cos x/√1-cos x=Cosec x + cot x

Answers

Answered by Anonymous
11

see the attachment dude....

jst rationalization....

Attachments:
Answered by Anonymous
15

\dfrac{ \sqrt{1 \:  +  \: cos \: x} }{ \sqrt{1 \:  -  \: cos \: x} } = cosec x + cot x

_______________[GIVEN]

• Taking L.H.S.

=> \dfrac{ \sqrt{1 \:  +  \: cos \: x} }{ \sqrt{1 \:  -  \: cos \: x} }

• Rationalize

=> \dfrac{ \sqrt{1 \:  +  \: cos \: x} }{ \sqrt{1 \:  -  \: cos \: x} } × \dfrac{ \sqrt{1 \:  +  \: cos \: x} }{ \sqrt{1 \:  +  \: cos \: x} }

=> \dfrac{  { \sqrt{(1 \:  +  \: cos \: x)} }^{2}  }{   \sqrt{sin}^{2}x  }

=> \dfrac{1\:+\:cos\:x}{sin\:x}

=> \dfrac{1}{sin\:x} + \dfrac{sin\:x}{cos\:x}

=> cosec x + cot x

• L.H.S. = R.H.S.

Hence, proved.

_____________________________

• Used formulas :

cosec x = \dfrac{1}{sin\:x}

cot x = \dfrac{cos\:x}{sin\:x}

________________________________


Anonymous: woah....long written
Anonymous: hats off
Anonymous: xD
Similar questions