prove that 1+cos0÷sinO÷ 1+ cos 0 = sin theta + cos theta.
Answers
Answered by
0
Step-by-step explanation:
LHS = sine 1 + cos 0 1 + cos 0 sin 0 +
LHS sin² 0 + (1 + cos 0)² sin 0(1+cos 0) =
sin² 0 + 1 + 2 cos 0 + cos² 0 sin 0(1+ cos 0) → LHS =
→ LHS = (sin² 0 + cos²0) + 1 + 2 cos 0 sin 0(1+ cos 0)
[ sin²+ cos² 0 = 1]
2 + 2 cos 0 sin 0(1+ cos 0) → LHS
2(1 + cos 0) sin 0(1 + cos 0) 2 sin Ꮎ = 2 cosec 0 RHS =
Similar questions