prove that 1 + cos² 2x = 2 (cos^4+ x + sin^4x
Answers
Answered by
1
LHS:
2[cos⁴(x) + sin⁴(x)]
=2{[cos²(x) + sin2(x)]² − 2sin²(x).cos²(x)}
=2[1 − 2sin²(x).cos²(x)]
=2 − 4sin²(x)cos²(x)
=2 − 4.[1−cos(2x)].[1+cos(2x)]
2 2
=2 − [1 − cos²(2x)]
=2 + cos²(2x) − 1
=1+cos²(2x)
HENCE PROVED!!!
Similar questions