Math, asked by agarwalradhika193, 8 months ago

Prove that
1 - cos2 A = sin2 A

Answers

Answered by TanmayShresht1977
0

Answer:

cos(2x) = cos2(x) – sin2(x) = 1 – 2 sin2(x) = 2 cos2(x) – 1 xggfsin(2x) = 2 sin(x) cos(x)

cos(2x) = cos2(x) – sin2(x) = 1 – 2 sin2(x) = 2 cos2(x) – 1

\tan(2x) = \dfrac{2 \tan(x)}{1 - \tan^2(x)}tan(2x)=

1−tan

2

(x)

2tan(x)

Half-Angle Identities

\sin\left(\dfrac{x}{2}\right) = \pm \sqrt{\dfrac{1 - \cos(x)}{2}}sin(

2

x

)=±

2

1−cos(x)

\cos\left(\dfrac{x}{2}\right) = \pm \sqrt{\dfrac{1 + \cos(x)}{2}}cos(

2

x

)=±

2

1+cos(x)

\tan\left(\dfrac{x}{2}\right) = \pm \sqrt{\dfrac{1 - \cos(x)}{1 + \cos(x)}}tan(

2

x

)=±

1+cos(x)

1−cos(x)

= \dfrac{1 - \cos(x)}{\sin(x)}=

sin(x)

1−cos(x)

= \dfrac{\sin(x)}{1 + \cos(x)}=

1+cos(x)

sin(x)

The above identities can be re-stated by squaring each side and doubling all of the angle measures. The results are as follows:

\sin^2(x) = \frac{1}{2} \big[1 - \cos(2x)\big]sin

2

(x)=

2

1

[1−cos(2x)]

\cos^2(x) = \frac{1}{2} \big[1 + \cos(2x)\big]cos

2

(x)=

2

1

[1+cos(2x)]

\tan^2(x) = \dfrac{1 - \cos(2x)}{1 + \cos(2x)}tan

2

(x)=

1+cos(2x)

1−cos(2x)

Similar questions