prove that (1-cos²A)sec²A=tan²A
Answers
Answered by
17
Prove that :-
- (1 - cos² A)sec² A = tan² A.
Answer -
LHS = RHS
Step-by-step Explanation:
Given to prove,
- (1 - cos² A)sec² A = tan² A
★ Solution :-
➝ (1 - cos² A)sec² A = tan² A
Using the trigonometric identify,
(1 - cos A) = sec A .
➝ (sin² A)sec² A = tan² A
Using the trigonometric identify,
sec A = 1/cos .
➝ (sin² A) × (1/cos² A) = tan² A
On multiplying,
➝ (sin² A × 1/cos² A) = tan² A
➝ sin² A/cos² A = tan² A
Using the trigonometric identify,
sin A/cos A = tan A .
➝ tan² A = tan² A
Therefore, LHS = RHS = tan² A.
Hence, Verified!
ㅤㅤㅤㅤㅤㅤ_____________________
Trigonometric identities used -:
- (1 - cos A) = sec A
- sec A = 1/cos
- sin A/cos A = tan A
Similar questions