Prove that = (1-cos²A).sec²B + tan²B (1-sin²A)=sin²A + tan²B
Answers
Answered by
1
Required Answer:-
Correct Question:
- Prove that (1 - cos²x).sec²x + tan²x.(1 - sin²x) = sin²x + tan²x
Proof:
To prove this, we need to prove LHS = RHS
We know that,
→ sin²x + cos²x = 1
→ sin²x = 1 - cos²x and cos²x = 1 - sin²x
→ tan x = sin x/cos x
→ sec x = 1/cos x
• Taking LHS:
= (1 - cos²x).sec²x + tan²x.(1 - sin²x)
= sin²x.sec²x + tan²x.cos²x [sin²x = 1 - cos²x and cos²x = 1 - sin²x]
= sin²x/cos²x + tan²x.cos²x [sec x = 1/cos x]
= tan²x + sin²x/cos²x × cos²x [sin x/cos x = tan x]
= tan²x + sin²x
= RHS •
Therefore, LHS = RHS (Proved)
Basic Trigonometry Formula:
1. Relationship between sides.
- sin x = Height/Hypotenuse.
- cos x = Base/Hypotenuse.
- tan x = Height/Base.
- cot x = Base/Height.
- sec x = Hypotenuse/Base.
- cosec x = Hypotenuse/Height.
2. Reciprocal Relation.
- sin x = 1/cosec x and cosec x = 1/sin x.
- cos x = 1/sec x and sec x = 1/cos x.
- tan x = 1/cot x and cot x = 1/tan x.
3. Cofunction Identities.
- sin(90° - x) = cos x and cos(90° - x) = sin(x)
- cosec(90° - x) = sec x and sec(90° - x) = cosec(x)
- tan(90° - x) = cot x and cot(90° - x) = tan x.
4. Pythagorean Identities.
- sin²x + cos²x = 1
- cosec²x - cot²x = 1
- sec²x - tan²x = 1
•••♪
Answered by
0
Step-by-step explanation:
(1 - cos²A) sec²B + tan²B (1-sin²A) = sin²A + tan²B
- 1 - cos²A = sin²A
sin²A sec²B + tan²B - tan²A sin²A = sin²A + tan²B
sin²A ( sec²B - tan²A ) + tan²B = sin²A + tan²B
- sec²B - tan²A = 1
sin²A + tan²B = sin²A + tan²B
Similar questions