Prove that ( 1 − cos2A ) . sec2B + tan2B ( 1− sin2A ) = sin2A + tan2B
Answers
Solution :-
On taking LHS :
( 1-cos² A ) sec² B + tan² B ( 1-sin² A )
We know that
sin² A + cos² A = 1
sec² A - tan² A = 1
Now,
( 1- cos² A) sec² B + tan² B ( 1-sin² A ) becomes
=( sin² A ) (1 + tan² B ) + tan² B ( 1-sin² A )
=sin² A+sin² Atan² B+tan² B-tan² B sin² A
=sin² A+sin² Atan² B+tan² B-sin² Atan² B
=sin² A+tan² B+(sin² A tan² B-sin² Atan² B)
=sin² A + tan² B + (0)
=sin² A + tan² B
=RHS
Therefore, LHS = RHS
Hence, Proved.
Answer :-
( 1 - cos² A ) sec² B + tan² B ( 1 - sin² A )
= sin² A + tan² B
Used formulae:-
• sin² A + cos² A = 1
• sec² A - tan² A = 1
On taking LHS:
(1-cos² A) sec² B + tan² B (1-sin² A)
We know that
sin² A + cos² A = 1
sec² A- tan² A = 1
Now,
(1- cos² A) sec² B + tan² B (1-sin² A) becomes
=( sin² A) (1 + tan² B) + tan² B (1-sin² A)
=sin² A+sin² Atan² B+tan² B-tan² B sin² A
=sin² A+sin² Atan² B+tan² B-sin² Atan² B
=sin² A+tan² B+(sin² A tan² B-sin² Atan² B)
=sin² A + tan² B + (0)
=sin² A + tan² B
=RHS
Therefore, LHS = RHS
Hence, Proved.
=sin² A+sin² Atan² B+tan² B-tan² B sin² A
=sin² A+sin² Atan² B+tan² B-sin² Atan² B
=sin² A+tan² B+(sin² A tan² B-sin² Atan² B)
=sin² A + tan² B + (0)
=sin² A + tan² B
=RHS
Therefore, LHS = RHS
Hence, Proved.
Answer :
(1-cos² A) sec² B + tan² B (1-sin² A)
= sin² A + tan² B
Used formulae:
sin² A+ cos² A = 1
• sec² A - tan² A = 1