Math, asked by gautam976, 5 months ago

Prove that :-
→ (1-cos²@)sec²@ = 1
[@ = theta]​

Answers

Answered by Anonymous
105

Given

  • (1 - cos²θ) sec²θ = 1

To prove

  • L.H.S = R.H.S

Solution

\large\tt\longmapsto{\color{cyan}{Taking\: L.H.S}}

\tt:\implies\: \: \: \: \: \: \: \: {L.H.S = (1 - cos^2θ) sec^2θ}

\sf\pink{⟶} 1 - sin²θ = cos²θ

\tt:\implies\: \: \: \: \: \: \: \: {L.H.S = cos^2θ.sec^2θ}

\huge{[} \because{secθ = \dfrac{1}{cosθ}{\therefore{sec^2θ = \dfrac{1}{cos^2θ}}}} \huge{]}

\tt:\implies\: \: \: \: \: \: \: \: {L.H.S = cos^2θ (\dfrac{1}{cos^2θ})}

\tt:\implies\: \: \: \: \: \: \: \: {L.H.S = \cancel{cos^2θ} (\dfrac{1}{\cancel{cos^2θ}})}

\tt:\implies\: \: \: \: \: \: \: \: {L.H.S = 1 = R.H.S}

\tt:\implies\: \: \: \: \: \: \: \: {L.H.S = R.H.S}

\mathcal\color{lime}{Hence\: proved}

━━━━━━━━━━━━━━━━━━━━━━

\: \: \: \: \: \: \: \: \: \: \: \: \boxed{\tt{\bigstar{MORE\: TO\: KNOW{\bigstar}}}}

\boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
2

─────────────────────

Gɪᴠᴇɴ -

  • (1 - ᴄᴏꜱ²Θ) ꜱᴇᴄ²Θ = 1

─────────────────────

T Pʀᴏᴠᴇ -

  • ʟ.ʜ.ꜱ = ʀ.ʜ.ꜱ

─────────────────────

Sᴏʟᴜᴛɪᴏɴ -

\large\bf\longmapsto{\color{red}{Taking\: L.H.S}}

ㅤㅤ

\tt:\implies{L.H.S = (1 - cos^2θ) sec^2θ}

ㅤㅤ

\tt:\implies {L.H.S = cos^2θ.sec^2θ}

ㅤㅤ

{\huge[}\because{secθ = \dfrac{1}{cosθ}{\therefore{sec^2θ = \dfrac{1}{cos^2θ}}}}\huge{]}

ㅤㅤ

\tt:\implies{L.H.S = cos^2θ (\dfrac{1}{cos^2θ})}

ㅤㅤ

\tt:\implies{L.H.S = \cancel{cos^2θ} (\dfrac{1}{\cancel{cos^2θ}})}

ㅤㅤ

\tt:\implies {L.H.S = 1 = R.H.S}

ㅤㅤ

\tt:\implies {L.H.S = R.H.S}

ㅤㅤ

 \huge\tt\color{red}{Hence\: proved}

─────────────────────

Similar questions