Prove that
(1+cosA÷
1-cosA)=
(cosec A+ cot A)²
Answers
Answered by
6
The proof is as follows-
To prove- √(1+cosA)/√(1-cosA)=cosecA + cot A
Proof-
LHS-
√(1+cosA)/√(1-cosA)
Multiplying with √(1+cosA) on both numerator and denominator, we have,
={√(1+cosA)*√(1+cosA)}/{√(1-cosA)*√(1+cosA)}
=[√{(1+cosA)*(1+cosA)}]/[√{(1-cosA)*(1+cosA)}]
={√(1+cosA)²}/{√(1²-cos²A)}
=(1+cosA)/√(sin²A)
=(1+cosA)/sinA
=(1/sinA)+(cosA/sinA)
=cosecA + cotA
Hence proved…
Similar questions