Prove that 1-cosA/1+cosA = (cosecA-cosA)^2
Answers
Answered by
7
Step-by-step explanation:
====================================
RHS
( cosecA - cotA )²
= ( 1/ sinA - cosA/sinA )²
= ( 1 - cosA/ sinA )²
= ( 1 + cosA )²/ sin²A
= ( 1 - cosA )²/ 1 - cos²A
= ( 1 - cosA ) ( 1 - cosA )/ ( 1 + cosA ) ( 1 - cosA )
= 1 - cosA / 1 + cosA
= LHS
hope this will help u......
Answered by
1
Proof:
Consider the LHS of the given equation
(1 - CosA)/(1 + CosA)
Multiply and divide it with (1 - cosA)
(1 - CosA)/(1 + CosA) × (1 - cosA)/(1 - cosA)
On multiplying, we get
=> (1 - cos A)²/(1 - Cos²A)
=> (1 - cos A)²/sin²A (because Sin²A + Cos²A = 1)
=> [ (1/sinA) - (cosA/SinA) ]²
=> [ CosecA - CotA ]² ( because 1/sinA = Cosec A) & ( cos A / Sin A = Cot A)
Similar questions
Math,
5 months ago
Physics,
5 months ago
Social Sciences,
10 months ago
Math,
10 months ago
English,
1 year ago