Math, asked by Amuthaparthiban71274, 1 year ago

Prove that 1-cosA/1+cosA=cosecA-cotA

Answers

Answered by Anonymous
8

\mathfrak{\underline{\underline{\green{ Solution:-}}}}

\underline{\pink{To \: prove}}

\mathbf{\sqrt{\dfrac{1-cosA}{1+cosA}}= cosecA - cotA}

\\

\underline{\pink{ proof}}

Let us consider LHS,

\\

LHS :

\mathbf{ = \sqrt{\dfrac{1-cosA}{1+cosA}}}

\\

By rationalising the denominator

\mathbf{ = \sqrt{\dfrac{(1-cosA)\:(1-cosA)}{(1+cosA)(1-cosA)}}}

\\

\mathbf{ = \sqrt{\dfrac{{(1-cosA)}^{2}}{1-{cos}^{2}A}}}

\\

\mathbf{ = \sqrt{\dfrac{{(1-cosA)}^{2}}{{sin}^{2}A}}}

\\

On cancelling square and square root,

\mathbf{ =\dfrac{1-cosA}{1+cosA}}

\\

\mathbf{ = \dfrac{1}{sinA} -\dfrac{cosA}{sinA}}

\\

\boxed{\red{\dfrac{1}{sinA} = cosecA}}

\boxed{\red{\dfrac{cosA}{sinA} = cotA}}

\\

Therefore,

\mathbf{ = CosecA-cot A}

\\

\mathbf{RHS = CosecA-cot A}

Here,

\boxed{\</strong><strong>pink</strong><strong>{</strong><strong>L</strong><strong>H</strong><strong>S</strong><strong> </strong><strong>=</strong><strong> </strong><strong>RHS</strong><strong>} }

\\

Hence proved!


Amuthaparthiban71274: I can't understand
Anonymous: Check it now
Similar questions