Math, asked by kumarsharmaronak, 7 months ago

prove that:

√1+cosA/1-cosA=cosecA+cotA​

Answers

Answered by kaushik05
3

To prove :

 \star \:  \sqrt{ \frac{1 +  \cos \: A}{1 -  \cos  \: A} }  =  \cosec \: A +  \cot \: A \\

Take LHS :

 \implies \:  \sqrt{ \frac{1 +  \cos \: A}{1 -  \cos \:A } }  \\

Rationalise the denominator :

 \implies \:  \sqrt{ \frac{1 +  \cos \:A }{1 -  \cos  \: A}  \times  \frac{1   +  \cos \: A}{1 +  \cos \:A } }  \\  \\  \implies \:  \sqrt{ \frac{ {(1 +  \cos \: A})^{2} }{ {1}^{2}  -  { \cos}^{2} A} }  \\  \\  \implies \:  \sqrt{ \frac{ {(1 +  \cos \: A)}^{2} }{ { \sin}^{2}A } }  \\   \\  \implies \:  \frac{1 +  \cos \:A }{ \sin \:A }  \\  \\  \implies \:  \frac{1}{ \sin \: A}   +  \frac{ \cos \: A}{ \sin \: A}  \\  \\  \implies \:  \cosec \: A \:  +  \cot \: A

LHS = RHS .

Hence, Proved .

Formula used :

 \star \boxed{  \bold{ { \sin }^{2}  \alpha  +  { \cos }^{2}  \alpha  = 1}} \\  \\  \star \boxed{ \bold{ \sin \:  \alpha  =  \frac{1}{ \csc( \alpha ) } }} \\  \\  \star \boxed{ \bold{  \cot \:  \alpha  =  \frac{  \cos( \alpha ) }{ \sin( \alpha ) } }}

Answered by parry8016
0

Step-by-step explanation:

HERE IS U R ANSWER DEAR PLZ FOLLW ME

Attachments:
Similar questions