Math, asked by shachijain2010, 3 months ago

Prove that:
√(1+cosA) / √(1-cosA) = (cosecA + cotA)

Answers

Answered by mathdude500
6

Answer:

Question:

Prove that

\bf \: \sqrt{\dfrac{1 + cosA}{1 - cosA} } = cosecA + cotA

\bf\underbrace\orange{Solution:}

Consider LHS

\bf \: \sqrt{\dfrac{1 + cosA}{1 - cosA} }

On rationalize the denominator, we get

\bf \: ⟹\sqrt{\dfrac{1 + cosA}{1 - cosA} \times \dfrac{1 + cosA}{1 + cosA}  }

\bf \: ⟹\sqrt{\dfrac{(1 +  {cosA)}^{2} }{1 -  {cos}^{2}A } }

\bf \: ⟹\sqrt{\dfrac{(1 +  {cosA)}^{2} }{{sin}^{2}A } }

\bf\implies \:\dfrac{1 + cosA}{sinA}

\bf\implies \:\dfrac{1}{sinA}  + \dfrac{cosA}{sinA}

\bf\implies \:cosecA + cotA

\bf\large \underbrace\red{Hence, \:  proved}

____________________________________________

Additional Information:-

Relationship between sides and T ratios

  • sin θ = Opposite Side/Hypotenuse
  • cos θ = Adjacent Side/Hypotenuse
  • tan θ = Opposite Side/Adjacent Side
  • sec θ = Hypotenuse/Adjacent Side
  • cosec θ = Hypotenuse/Opposite Side
  • cot θ = Adjacent Side/Opposite Side

◇ Reciprocal Identities

  • cosec θ = 1/sin θ
  • sec θ = 1/cos θ
  • cot θ = 1/tan θ
  • sin θ = 1/cosec θ
  • cos θ = 1/sec θ
  • tan θ = 1/cot θ

◇ Co-function Identities

  • sin (90°−x) = cos x
  • cos (90°−x) = sin x
  • tan (90°−x) = cot x
  • cot (90°−x) = tan x
  • sec (90°−x) = cosec x
  • cosec (90°−x) = sec x

Fundamental Trigonometric Identities

  • sin²θ + cos²θ = 1
  • sec²θ - tan²θ = 1
  • cosec²θ - cot²θ = 1

_____________________________________________

Similar questions