Math, asked by AaliyaNausheen, 3 months ago

Prove that √1+cosA/√1-cosA=cosecA+cotA.​

Answers

Answered by Anonymous
6

TO PROVE :-

 \\  \sf \:  \sqrt{ \dfrac{1 + cosA}{1 - cosA} }  = cosecA + cotA \\  \\

SOLUTION :-

 \\  \sf \: R.H.S =  \sqrt{ \dfrac{1 + cosA}{1 - cosA} }  \\

Multiplying numerator and denominator with √1+cosA ,

 \\   \implies\sf \:  \sqrt{ \dfrac{1 + cosA}{1 - cosA}  \times  \dfrac{1 + cosA}{1  +  cosA} }  \\  \\  \\   \implies\sf \:  \sqrt{ \dfrac{(1 +  {cosA)}^{2} }{(1 - cosA)(1 + cosA)} }  \\  \\  \\  \implies \sf \:  \sqrt{ \dfrac{(1 +  {cosA)}^{2} }{1 -  {cos}^{2}A } }  \\

 \\  \\  \boxed{ \bf \: {sin}^{2}A +  {cos}^{2}A   = 1 } \\  \\  \\   \implies\sf \:  \sqrt{ \dfrac{(1 +  {cosA)}^{2} }{ {sin}^{2}A } }  \\  \\  \\  \implies \sf \:  \dfrac{1 + cos}{sin}  \\  \\  \\  \implies \sf \:  \dfrac{1}{sinA}  +  \dfrac{cosA}{sinA}  \\  \\

 \\  \boxed{ \bf \:  \dfrac{1}{sinA}  = cosecA} \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \bf \: \dfrac{cosA}{sinA}  = cotA } \\  \\  \\  \implies \sf \: cosecA + cotA \: = R.H.S \:  \:  \:  \: (verified) \\ \\

MORE TO KNOW :-

★ 1 + tan²A = sec²A

★ 1 + cot²A = cosec²A

★ tanA = sinA/cosA

★ cosA = 1/secA

Similar questions