Math, asked by Anonymous, 2 months ago

Prove that : 1-cosA/1+cosA =(cosecA - cotA ) square ?

•Answer with full explanation!
Best of luck!


Answers

Answered by BrainlyShinestar
106

Corrected Question :

  • {\sf{Prove~that~:~\dfrac{1~-~\cos A}{1~+~\cos A}~=~(\cot A~-~\cosec A)^2~\large{?}}}

~

Given : {\sf{\dfrac{1~- ~\cos A}{1~+~ \cos A}~=~(\cot A~-~\cosec A)^2}}

To Prove : {\sf{\dfrac{1~-~\cos A}{1~+~\cos A}~=~\cos A~-~\cosec A)^2}}

________________________

{\sf{\dfrac{1~-~\cos A}{1~+~\cos A}~=~\cos A~-~\cosec A)^2}}

~

Here,

~~~~~~~~~~{\sf:\implies{L.H.S~=~\dfrac{1~-~\cos A}{1~+~\cos A}}}

~~~~~~~~~~{\sf:\implies{R.H.S~=~(\cos A~-~\cosec A}}

~

\underline{\frak{Now~ By~ Solving~ the ~L.H.S~:}}

~

~~~~~~~~~~{\sf:\implies{L.H.S~=~\dfrac{1~-~\cos A}{1~+~\cos A}}}

~~~~~~~~~~{\sf:\implies{\dfrac{1~-~\cos A}{1~+~\cos A}}}

~

\underline{\sf{Multiplying~both~and~ numerator ~and~ denominator ~by~\bf{(1~-~cos A)}}}

~~~~~~~~~~{\sf:\implies{\dfrac{1~-~\cos A}{1~+~\cos A}~×~\dfrac{1~-~\cos A}{1~-~\cos A}}}

~

\underline{\frak{As ~we ~know~ that~:}}

  • \boxed{\sf\pink{(a~+~b)(a~-~b)~=~(a~-~b)^2}}

~

~~~~~~~~~~{\sf:\implies{\dfrac{1~-~\cos A}{1~+~\cos A}~×~\dfrac{1~-~\cos A}{1~-~\cos A}}}

~~~~~~~~~~{\sf:\implies{\dfrac{(1~-~\cos A)^{2}}{1~-~\cos^{2} A}}}

~

\underline{\frak{As ~we ~know ~that~:}}

  • \boxed{\sf\pink{\sin^{2}\theta~=~1~-~\cos^{2} A}}

~

~~~~~~~~~~{\sf:\implies{\dfrac{(1~-~cos A)^2}{sin^{2} A}}}

~~~~~~~~~~{\sf:\implies{\bigg(\dfrac{1~-~\cos A}{sin A}\bigg)^2}}

~

Or,

~~~~~~~~~~{\sf:\implies{\bigg(\dfrac{1}{\sin A}~-~\dfrac{\cos A}{\sin A}\bigg)^2}}

~

\underline{\frak{As~ we~ know~ that~:}}

  • \boxed{\sf\pink{\dfrac{1}{\sin A}~=~cosec A}}

~

~~~~~~~~~~{\sf:\implies{\bigg(cosec A~-~\dfrac{\cos A}{\sin A}\bigg)^2}}

~

\underline{\frak{As ~we ~know~ that~:}}

  • \boxed{\sf\pink{\dfrac{\cos A}{\sin A}~=~\cot A}}

~

~~~~~~~~~~{\sf:\implies{\bigg(\cosec A~-~cot\bigg)^2}}

~

Or,

~~~~~~~~~~{\sf:\implies{L.H.S~=~\bigg(\cot A~-~\cosec A\bigg)^2}}

~

Therefore,

~~~~~~~~~~{\sf:\implies{L.H.S~=~\bigg(\cot A~-~cosec\bigg)^2}}

~

______________________________________

~~~~~~~~~~{\sf:\implies{L.H.S~=~\bigg(\cot A~-~\cosec \bigg)^2}}

~~~~~~~~~~{\sf:\implies{R.H.S~=~(\cot A~-~\cosec A)^2}}

~

Hence,

~~~~~~~~~~~~~~~~~~\boxed{\sf{L.H.S~=~R.H.S}}

~~~~\qquad\quad\therefore\underline{\textsf{\textbf{Hence Proved!}}}

Similar questions