Math, asked by BeBTS, 6 months ago

prove that 1-cosA / 1+cosA=( cotA- cosecA)^2​

Answers

Answered by Ataraxia
23

To Prove :-

\sf \dfrac{1-cosA}{1+cosA} = (cotA- cosecA)^2

Solution :-

\sf L.H.S = \dfrac{1-cosA}{1+cosA}

Multiply numerator and denominator by \sf 1- cosA,

       = \sf \dfrac{(1-cosA)\times (1-cosA} {(1+cosA)\times (1-cosA)} \\\\= \dfrac{(1-cosA)^2}{1-cos^2A}

\bullet \bf \  1-cos^2A = sin^2A

       = \sf \dfrac{(1-cosA)^2}{sin^2A} \\\\= \left( \dfrac{1-cosA}{sinA} \right)^2 \\\\= \left( \dfrac{1}{sinA} - \dfrac{cosA} {sinA}  \right)^2

\bullet \bf \ cosecA= \dfrac{1}{sinA } \\\\\bullet \ cotA = \dfrac{cosA}{sinA}

        = \sf (cosecA-cotA)^2 \\\\= (cotA-cosecA)^2 \\\\= R.H.S

Hence proved

Answered by ScanTxN
35

Question\frac{1-cosA}{1+cosaA} = (cotA- cosecA)²solution LHS\frac{1-cosA}{1+cosaA} (Multiply numerator and denominator by 1- cosA)= [tex]\frac{(

[tex]\frac{1-cos

Similar questions