Math, asked by skrishna5021, 4 months ago

prove that(1+cosA)(1+cosA)= sin^2A​

Answers

Answered by dubeysudhanshu474
1

Answer:

Simplifying

(1 + -1cosA)(1 + cosA) = sin2A

Multiply (1 + -1cosA) * (1 + cosA)

(1(1 + cosA) + -1cosA * (1 + cosA)) = sin2A

((1 * 1 + cosA * 1) + -1cosA * (1 + cosA)) = sin2A

((1 + 1cosA) + -1cosA * (1 + cosA)) = sin2A

(1 + 1cosA + (1 * -1cosA + cosA * -1cosA)) = sin2A

(1 + 1cosA + (-1cosA + -1c2o2s2A2)) = sin2A

Combine like terms: 1cosA + -1cosA = 0

(1 + 0 + -1c2o2s2A2) = sin2A

(1 + -1c2o2s2A2) = sin2A

Solving

1 + -1c2o2s2A2 = in2sA

Solving for variable 'c'.

Move all terms containing c to the left, all other terms to the right.

Add '-1' to each side of the equation.

1 + -1 + -1c2o2s2A2 = -1 + in2sA

Combine like terms: 1 + -1 = 0

0 + -1c2o2s2A2 = -1 + in2sA

-1c2o2s2A2 = -1 + in2sA

Divide each side by '-1o2s2A2'.

c2 = o-2s-2A-2 + -1in2o-2s-1A-1

Simplifying

c2 = o-2s-2A-2 + -1in2o-2s-1A-1

Reorder the terms:

c2 = -1in2o-2s-1A-1 + o-2s-2A-2

Reorder the terms:

c2 + in2o-2s-1A-1 + -1o-2s-2A-2 = -1in2o-2s-1A-1 + in2o-2s-1A-1 + o-2s-2A-2 + -1o-2s-2A-2

Combine like terms: -1in2o-2s-1A-1 + in2o-2s-1A-1 = 0

c2 + in2o-2s-1A-1 + -1o-2s-2A-2 = 0 + o-2s-2A-2 + -1o-2s-2A-2

c2 + in2o-2s-1A-1 + -1o-2s-2A-2 = o-2s-2A-2 + -1o-2s-2A-2

Combine like terms: o-2s-2A-2 + -1o-2s-2A-2 = 0

c2 + in2o-2s-1A-1 + -1o-2s-2A-2 = 0

The solution to this equation

THANK YOU!PLEASE FOLLW ME AND THANK ME HOPE IT WILL HELP YOU

Similar questions