Math, asked by alamaanalluz, 1 year ago

prove that 1+cosA/1-cosA = tanA/(secA-1)​

Answers

Answered by RakhiBhedke
7

Answer:

 \boxed{\purple{\Large{\mathsf{\frac{1 + cosA}{1 - cosA} = \frac{tanA}{(secA-1)}}}}}

Step-by-step explanation:

To prove:

 \Large{\frac{1 + cosA}{1 - cosA} = \frac{tanA}{(secA-1)}}

Proof:

L.H.S =  \Large{\frac{1 + cosA}{1 - cosA}}

=> Dividing by cosA on both numerator and denominator, we obtain,

=>  \Large{\dfrac{\frac{1 + cosA}{cosA}}{\frac{1 - cosA}{cosA}}}

=>  \Large{\dfrac{\frac{1}{cosA} + \frac{cosA}{cosA}}{\frac{1}{cosA} - \frac{cosA}{cosA}}}

=>  \Large{\frac{secA + 1}{secA - 1}}

 \Large{(\because{\frac{1}{cosA} = secA)}}

=> By squaring

=>  \Large{\frac{sec^2A + 1^2}{(secA - 1)^2}}

=>  \Large{\frac{tan^2A}{(secA - 1)^2}}

[°.° 1 + tan²A = sec²A,

.°. tan²A = sec²A - 1]

Taking square root,

=>  \Large{\frac{tanA}{(secA - 1)}} = R.H.S

 \boxed{\pink{\Large{\mathsf{\frac{1 + cosA}{1 - cosA} = \frac{tanA}{(secA-1)}}}}}

Similar questions