Math, asked by sherlockhomesparadox, 7 months ago

prove that 1 + cosA= 2cos^2A/2

Answers

Answered by pulakmath007
4

SOLUTION

TO PROVE

 \displaystyle \sf{1 +  \cos A = 2 { \cos}^{2}   \: \frac{A}{2} }

EVALUATION

We are aware of the Trigonometric formula that

 \displaystyle \sf{ \cos( \alpha  +  \beta ) =  \cos  \alpha  \cos  \beta  -  \sin  \alpha  \sin  \beta   }

 \displaystyle \sf{ Putting \:  \: \alpha  =  \beta  = \frac{A}{2} }

We get

 \displaystyle \sf{ \cos  \bigg(\frac{A}{2} + \frac{A}{2} \bigg) =   \cos  \frac{A}{2}  \cos  \frac{A}{2} - \sin \frac{A}{2}\sin \frac{A}{2}}

 \displaystyle \sf{  \implies \: \cos  A  =   {\cos }^{2}   \frac{A}{2}   -{ \sin}^{2}  \frac{A}{2}}

 \displaystyle \sf{  \implies \: \cos  A  =   {\cos }^{2}   \frac{A}{2}   - \bigg(1 - { \cos}^{2}  \frac{A}{2} \bigg)}

 \displaystyle \sf{  \implies \: \cos  A  =   {\cos }^{2}   \frac{A}{2}    - 1  +  { \cos}^{2}  \frac{A}{2} }

 \displaystyle \sf{  \implies \: \cos  A  =   2{\cos }^{2}   \frac{A}{2}    - 1  }

 \displaystyle \sf{  \implies \: 1 + \cos  A  =   2{\cos }^{2}   \frac{A}{2}     }

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if sin theta =√3/2,cos theta=-1/2 then theta lies in

https://brainly.in/question/31225531

2. find the value of (1+cos18)(1+cos54)(1+cos126)(1+cos162)

https://brainly.in/question/22916202

Similar questions