prove that
[1+ CosA-Casec A] [1+tan A+ sec A] = 2
2
Answers
Answered by
6
Correct question :
prove that
(1 + CotA - CasecA)(1 + tanA + secA) = 2
Solution
LHS = (1 + CotA - CosecA) (1 + tanA + secA)
=> 1 + tanA + secA + cotA + cotA tanA + cotA secA - cosecA - cosecA tanA - cosecA secA
= > 1 + tanA + secA + cotA + 1 + cosecA - cosecA - secA - cosecA secA
=> 2 + tanA + cotA - secA cosecA
=> 2 + (sinA/cosA) + (cosA/sinA) - secA cosecA
=> 2 + (sin²A + cos²A/cosA sinA) - 1/cosA sinA
=> 2 + (1/cosA sinA) - (1/cosA sinA)
=> 2 ......RHS
Answered by
16
Step-by-step explanation:
Prove that:-
[ 1 + cot A - cosec A ] [1 + tan A + sec A ] = 2
Basics needed to prove the above trigonometric value:-
•
•
•
•
•
•
Let us prove by simplifying LHS
LHS = [ 1 + cot A - cosec A ] [1 + tan A + sec A ]
=
=
=
=
=
=
=
=
LHS = RHS
[ 1 + cot A - cosec A ] [1 + tan A + sec A ] = 2
Hence; Proved
Similar questions