Math, asked by vipershadow54, 9 months ago

prove that
[1+ CosA-Casec A] [1+tan A+ sec A] = 2
2​

Answers

Answered by Anonymous
6

Correct question :

prove that

(1 + CotA - CasecA)(1 + tanA + secA) = 2

Solution

LHS = (1 + CotA - CosecA) (1 + tanA + secA)

=> 1 + tanA + secA + cotA + cotA tanA + cotA secA - cosecA - cosecA tanA - cosecA secA

= > 1 + tanA + secA + cotA + 1 + cosecA - cosecA - secA - cosecA secA

=> 2 + tanA + cotA - secA cosecA

=> 2 + (sinA/cosA) + (cosA/sinA) - secA cosecA

=> 2 + (sin²A + cos²A/cosA sinA) - 1/cosA sinA

=> 2 + (1/cosA sinA) - (1/cosA sinA)

=> 2 ......RHS

Answered by MaIeficent
16

Step-by-step explanation:

\bf{\underline{\underline\purple{Correct\: Question:-}}}

Prove that:-

[ 1 + cot A - cosec A ] [1 + tan A + sec A ] = 2

Basics needed to prove the above trigonometric value:-

\rm \cot A =  \dfrac{ \cos A}{ \sin  A}

\rm \tan A =  \dfrac{ \sin A}{ \cos  A}

\rm \cosec A =  \dfrac{ 1}{ \sin  A}

\rm \sec A =  \dfrac{ 1}{ \cos  A}

\rm  { \sin}^{2} A +   { \cos}^{2} A  = 1

\rm  (a + b)(a - b) = { a}^{2}  -   { b}^{2}

\bf{\underline{\underline\red{Proof:-}}}

 \rm[ 1 + cot A - cosec A ] [1 + tan A + sec A ] = 2

Let us prove by simplifying LHS

LHS = [ 1 + cot A - cosec A ] [1 + tan A + sec A ]

=  \rm \bigg [1 +  \dfrac{cos A}{sinA}   -  \dfrac{1}{sinA} \bigg] \bigg [1 +  \dfrac{sinA}{cosA}    +   \dfrac{1}{cosA} \bigg]

=  \rm \bigg [ \dfrac{sinA + cos A - 1}{sinA}    \bigg] \bigg [ \dfrac{sinA + cosA + 1}{cosA}   \bigg]

=  \rm \dfrac{(sinA + cos A - 1)(sinA + cosA + 1)}{sinAcosA}

=  \rm \dfrac{(sinA + cos A)^{2}  - {1}^{2} }{sinAcosA}

=  \rm \dfrac{sinA^{2}  + cos A^{2}   + 2sinAcosA- {1}}{sinAcosA}

=  \rm \dfrac{1+ 2sinAcosA- {1}}{sinAcosA}

=  \rm \dfrac{ 2sinAcosA}{sinAcosA}

= \rm 2 = LHS

LHS = RHS

[ 1 + cot A - cosec A ] [1 + tan A + sec A ] = 2

Hence; Proved

Similar questions