Math, asked by kaviya156, 1 year ago

Prove that 1+cosA-sin^2A/sinA(1+cosA)=cot A​

Attachments:

Answers

Answered by ihrishi
5

Step-by-step explanation:

 \frac{1 + cos \theta -  {sin}^{2}  \theta}{sin \theta(1 + cos \theta)}  = cot \theta \\ LHS =  \frac{1 + cos \theta -  {sin}^{2}  \theta}{sin \theta(1 + cos \theta)}  \\  =  \frac{1 + cos \theta - (1 -  {cos}^{2}  \theta)}{sin \theta(1 + cos \theta)}  \\  =  \frac{1 + cos \theta - 1  +  {cos}^{2}  \theta}{sin \theta(1 + cos \theta)}  \\ =  \frac{cos \theta  +  {cos}^{2}  \theta}{sin \theta(1 + cos \theta)} \\ =  \frac{cos\theta (1 +  {cos} \theta)}{sin \theta(1 + cos \theta)}\\ =  \frac{cos\theta }{sin \theta} \\  = cot\theta \\ RHS \:

Thus proved:

Similar questions