Math, asked by mgirap55, 6 months ago

prove that 1+cosA-sin2A/sinA(1+cosA)=cot A​

Answers

Answered by InfiniteSoul
12

\sf{\orange{\underline{\huge{\mathsf{Solution}}}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{ 1 + cos A - Sin^2A}{ sin A( 1 + cosA)} = CotA}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{ 1 - Sin^2A - cosA}{ sin A( 1 + cosA)} = CotA}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{ 1 - Sin^2A = Cos^2A}}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{ cos^2A -  cos A }{ sin A( 1 + cosA)} = Cot A }}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{ CosA ( 1 - cos A )}{ sin A( 1 + cosA)} = CotA}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{ CosA \cancel{( 1 - cos A )}}{ sin A \cancel{( 1 + cosA)}} = Cot A }}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{ CosA }{ sin A} = CotA }}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{CotA =\dfrac{cosA}{SinA}}}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ Cot A = Cot A }}

⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀ .......Hence Proved

⠀⠀

Answered by Unacademy
1

\sf{\bold{\purple{\star{\underline{\underline{Solution}}}}}}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ \dfrac{1 + cos A - sin^2A}{sinA ( 1 + cosA)}  = cot A }}

⠀⠀⠀⠀

\sf : \implies\:{\frak{\dfrac { 1 + sin^2A + cosA}{sinA ( 1 + cosA)}  = cot A }}

⠀⠀⠀⠀

\sf{\star{\boxed{\orange{\frak{ 1 + sin^2A = Cos^2A}}}}}

⠀⠀⠀⠀

\sf : \implies\:{ \frak{\dfrac{ cos^2A - cosA}{sinA ( 1 + cosA)}  = cot A }}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ \dfrac{ Cos A ( 1 + cosA)}{sinA ( 1 + cosA)}  = cot A }}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ \dfrac{cosA}{sinA }  = cot A }}

⠀⠀⠀⠀

\sf{\star{\boxed{\orange{\frak{ \dfrac{cosA}{SinA} = Cot A}}}}}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ cotA = cot A }}

⠀⠀⠀⠀

Similar questions