Math, asked by jainanushka105, 11 months ago

Prove that 1+cosA+sinA/1+cosA-sinA=1+sinA/cosA

Answers

Answered by Anonymous
47

Step-by-step explanation:

Refer to the attachment.

Some identities :

  • 1/SecA = CosA

  • 1/CosA = SecA

  • SinA/CosA = tanA

  • cosA/sinA = cotA

  • 1/sinA = CosecA

  • CosecA = 1/SinA

  • Sec²A - Tan²A = 1

  • Cosec²A - Cot²A = 1

  • Sin²A + Cos²A = 1

  • (a+b)(a-b) = a² - b²

Attachments:
Answered by Anonymous
33

To Prove

 \sf \dfrac{1 +  \cos(x)  +  \sin(x) }{1  +   \cos(x) -  \sin(x)  }  =  \dfrac{1 +  \sin(x) }{ \cos(x) }

Proof

LHS

\sf \dfrac{1 +  \cos(x)  +  \sin(x) }{1  +   \cos(x) -  \sin(x)  } \:  \\

Dividing both numerator and denominator by cos(x)

 \longrightarrow \:  \sf \:  \dfrac{ \sec(x) +  \tan(x)  + 1 }{ \sec(x)  -  \tan(x) + 1 }

But sec²∅ - tan²∅ = 1

 \longrightarrow \:  \tt \: \:  \dfrac{ \sec(x) + \tan(x)   +   \bigg({sec}^{2} (x)  -  {tan}^{2} (x) \bigg)}{\sec(x) + \tan(x) - 1}

Now,

sec²x - tan²x = (sec x + tan x)(sec x - tan x )

Thus,

 \longrightarrow \:  \sf \:  \dfrac{ \sec(x)   -   \tan(x)  +  1 }{ \sec(x)  -  \tan(x) + 1 }  \times  \sec(x )  +  \tan(x)  \\  \\  \longrightarrow \:  \sf \:  \dfrac{1}{ \cos(x) }  +  \dfrac{ \sin(x) }{ \cos(x) }  \\  \\  \longrightarrow \:  \sf \:  \dfrac{1 +  \sin( x) }{ \cos(x) }

Similar questions