Math, asked by mbhadra1968, 10 months ago

prove that
1+cosa/sina = sina/1-cosa​

Answers

Answered by mansiaahmed
0

Answer:

please brainleast me I will follow you

Answered by Uniquedosti00017
3

Answer:

multiplying and dividing by

1 -  \cos( \alpha )

then,

lhs \\  \frac{1 +  \cos( \alpha ) }{ \sin( \alpha ) }  \\  =  \frac{1 +  \cos( \alpha ) }{ \sin( \alpha ) }  \times  \frac{1 -  \cos( \alpha ) }{1 -  \cos( \alpha ) }  \\  =  \frac{ {1}^{2} -  { \cos( \alpha ) }^{2}  }{ \sin \alpha (1 -  \cos\alpha )  }  \\  =  \frac{1 -  { \cos \alpha }^{2} }{ \sin \alpha(1 -  \cos\alpha )   }  \\  =  \frac{ { \sin( \alpha ) }^{2} }{ \sin\alpha (1 -  \cos\alpha )  }  \\  =  \frac{ \sin( \alpha ) }{1 -  \cos( \alpha ) }  = rhs

proved...

Step-by-step explanation:

formula used : ( a + b)( a -b)= a² -b²

and

sin²∅ + cos²∅ = 1

✌️✌️I hope it will help you..

if it helps you then Mark as brainliest..

Similar questions