Math, asked by deepankjayswal, 5 months ago

prove that 1-cosA/sinA = sinA/1+cosA​

Answers

Answered by anindyaadhikari13
6

Required Answer:-

Given to prove:

 \rm \mapsto \dfrac{1 -  \cos(x) }{ \sin(x) }  =  \dfrac{ \sin(x) }{1 +  \cos(x) }

Proof:

Taking LHS,

 \rm  \dfrac{1 -  \cos(x) }{ \sin(x) }

 \rm = \dfrac{(1 -  \cos(x))(1 +  \cos(x)) }{ \sin(x)(1 +  \cos(x) )}

 \rm = \dfrac{ {(1)}^{2} -  \cos^{2} (x) }{ \sin(x)(1 +  \cos(x) )}

 \rm = \dfrac{1-  \cos^{2} (x) }{ \sin(x)(1 +  \cos(x) )}

We know that,

 \rm { \sin}^{2} (x) +  \cos^{2} (x)  = 1

\implies  \rm{ \sin }^{2}(x) = 1 -  { \cos }^{2}(x)

Therefore,

 \rm  \dfrac{1-  \cos^{2} (x) }{ \sin(x)(1 +  \cos(x) )}

 \rm = \dfrac{\sin^{2} (x) }{ \sin(x)(1 +  \cos(x) )}

 \rm = \dfrac{  \cancel{\sin(x)} \times  \sin(x) }{  \cancel{\sin(x)}(1 +  \cos(x) )}

 \rm = \dfrac{\sin(x) }{1 +  \cos(x) }

= RHS

Hence, LHS = RHS (Hence Proved)

Relationship between Trigonometric Functions:

  • sin(x) = 1/cosec(x)
  • cos(x) = 1/sec(x)
  • tan(x) = 1/cot(x)
  • sin(x)/cos(x) = tan(x)
Answered by Anisha5119
6

Answer:

Heya mate here's the answer Mark as brainliest pleaseeeeee follow up

Attachments:
Similar questions