Prove that 1-cosA/sinA=tan(A/2)
Answers
Answered by
2
Step-by-step explanation:
using identity...it's simple...
mark me as brainlist ❤️
Attachments:
Answered by
0
step by step: L.H.S=1‐cosA/sinA
=[CosA÷(1-sinA)]÷[(1+sinA)÷(1+sinA)]
=cosA(1+sinA)÷(1-sinA)²
=cosA(1+sinA)÷cos²A
=(1+sinA)÷cosA
=[Cos²(A/2)+Sin²(A/2)+2sin(A/2)cos(A/2)]÷[cos²(A/2)-sin²(A/2)]
=[cos(A/2)+sin(A/2)]÷[cos(A/2)-sin(A/2)]
=[1+tan(A/2)]÷[1+tan(A/2)]
=[tan45⁰+tan(A/2)]÷[1-tan45⁰tan(A/2)]
=tan(45⁰+A/2)=R.H.S(proved)
Similar questions