Math, asked by hemalatha2965, 7 months ago

prove that (1+cosA+tanA)(sinA-cosA)/sec³A-cosec³A=sin²Acos²A​

Attachments:

Answers

Answered by MaIeficent
25

Step-by-step explanation:

Question:-

\sf Prove \: that :-

\sf \dfrac{(1  + cotA + tanA)(sinA - cosA)}{sec^3A - cosec^3A} = sin^2A \: cos^2 A

Proof:-

\sf LHS =  \dfrac{(1  + cotA + tanA)(sinA - cosA)}{sec^3A - cosec^3A}

\sf = \dfrac{ \bigg(1  + \dfrac{cosA}{sinA}   +  \dfrac{sinA}{cosA}  \bigg) \big(sinA - cosA \big)}{sec^3A - cosec^3A}

\sf = \dfrac{ \bigg( \dfrac{sinA \: cosA +  {cos}^{2}A +  {sin}^{2}A}{sinA \: cosA}</p><p>  \bigg) \big(sinA - cosA \big)}{ \dfrac{1}{cos^3A} -  \dfrac{1}{sin^3A}}

\sf = \dfrac{ \bigg( \dfrac{sinA \: cosA +  {cos}^{2}A +  {sin}^{2}A}{sinA \: cosA}</p><p>  \bigg) \big(sinA - cosA \big)}{ \dfrac{sin^3A -cos^3A}{cos^3A \: sin^3A} }

\sf = \dfrac{ ( sinA \: cosA +  {cos}^{2}A +  {sin}^{2}A) \big(sinA - cosA \big)}{ sinA \: cosA } \times   \dfrac{sin^3A \: cos^3A}{ sin^3A - cos^3A }

\sf  = \dfrac{  {sin}^{3}A -  {cos}^{3} A }{ sinA \: cosA } \times   \dfrac{sin^3A \: cos^3A }{ sin^3A - cos^3A }

\sf  =    \dfrac{(sin^2A \: cos^2A)(sinA  \: cosA) }{ sinA  \: cosA}

\sf  =    sin^2A \: cos^2A

LHS = RHS

Hence Proved

Similar questions