Prove that:
(1+cosA+tanA) (sinA-cosA)=sinA tanA-cotA cosA
Answers
Answered by
5

0
Home»Forum»Trigonometry»Prove the following (1+CotA+tanA) . (sina-...
Prove the following (1+CotA+tanA) . (sina- cosa)= secA/cosec^2A - cosec A/sec^2 A
one year ago
Answers : (1)
DEAR STUDENT OR SIR
THE SOULUTION IS
take LHS
(1+cotA+tanA)(sinA-cosA)= (1+cosA/sinA+sinA/cosA)(sinA-cosA)
= (sinAcosA+sin^2A+cos^2A / sinAcosA)(sinA-cosA)
= (sinAcosA+1 /sinAcosA )(sinA-cosA)
=cosecAsecA(sinAcosA+1)(sinA-cosA)
=cosecAsecA(sin^2acosA+sinA-sinAcos^2A-cosA)
=cosecAsecA(cosA{sin^2A-1)-sinA{cos^2A-1})
=cosecAsecA(cos^3A-sin^3A)
=cosecAsecA(1/sec^3A-1/cosec^3A)
multipty cosecAsecA inside we get
=secA/cosec^2A-cosecA/sec^2a
Similar questions