Math, asked by suklakanta71, 10 months ago

Prove that 1/(cosec A-cot A)-1/Sin A= 1/Sin A -1/(cosec A+cot A)​

Answers

Answered by pulakmath007
32

\displaystyle\huge\green{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

{cosec }^{2}A   - {cot }^{2}  A= 1

CALCULATION

LHS

 \displaystyle \:  \frac{1}{ (cosec A-cot A)}- \frac{1}{Sin A}

 =  \displaystyle \:  \frac{ (cosec A + cot A)}{  (cosec A + cot A)(cosec A-cot A)}- {cosec A}

 =  \displaystyle \:  \frac{ ({cosec } A + cot A)}{  ({cosec }^{2}A   - {cot }^{2}  A)}- {cosec A}

 =  \displaystyle \:  \frac{ ({cosec } A + cot A)}{  1}- {cosec A}

 =  \displaystyle \:  { ({cosec } A + cot A)}- {cosec A}

 = cot A

RHS

 \displaystyle \:  \frac{1}{Sin A} -  \frac{1}{ (cosec A + cot A)}

 =    \displaystyle \:   {cosec A} - \frac{ (cosec A  -  cot A)}{  (cosec A + cot A)(cosec A-cot A)}

 =  \displaystyle \:{cosec A} -   \frac{ ({cosec } A  -  cot A)}{  ({cosec }^{2}A   - {cot }^{2}  A)}

 =  \displaystyle \:  {cosec A} - \frac{ ({cosec } A  -  cot A)}{  1}

 =  \displaystyle \: {cosec A} -  { ({cosec } A  -  cot A)}

 = {cot A}

Hence LHS = RHS

Hence proved

Answered by BrainlyEmpire
50

Answer:

.

.

.

Refer to the attachment

Attachments:
Similar questions