Prove that
1/cosec theta-cot theta - 1/sin theta = 1/sin theta - 1/cosec theta+cot theta ?????????
Answers
Answered by
17
We have Given that
✨ 1/cosec theta + cot theta - 1/sin theta
By proceeding.....
⭐1/cosec theta + cot theta × cosec theta - cot theta/cosec theta - cot theta - 1/sin theta
⭐cosec theta - cot theta/cosec² theta - cot² theta - 1/sin theta
⭐cosec theta - cot theta/1 - 1/sin theta
⭐sin theta(cosec theta - cot theta)-1/sin theta
➡1-cos theta - 1/sin theta
➡1/sin theta - cos theta/sin theta - 1/sin theta
➡1/sin theta - cot theta - cosec theta
➡1/sin theta - (cosec theta + cot theta)
➡1/sin theta - (cosec theta + cot theta) × (cosec theta - cot theta)/cosec theta - cot theta)
➡ 1/sin theta - 1/(cosec theta - cot theta)
✨ 1/cosec theta + cot theta - 1/sin theta
By proceeding.....
⭐1/cosec theta + cot theta × cosec theta - cot theta/cosec theta - cot theta - 1/sin theta
⭐cosec theta - cot theta/cosec² theta - cot² theta - 1/sin theta
⭐cosec theta - cot theta/1 - 1/sin theta
⭐sin theta(cosec theta - cot theta)-1/sin theta
➡1-cos theta - 1/sin theta
➡1/sin theta - cos theta/sin theta - 1/sin theta
➡1/sin theta - cot theta - cosec theta
➡1/sin theta - (cosec theta + cot theta)
➡1/sin theta - (cosec theta + cot theta) × (cosec theta - cot theta)/cosec theta - cot theta)
➡ 1/sin theta - 1/(cosec theta - cot theta)
Answered by
5
hope it will be helpful for you
Attachments:
Similar questions