Prove that 1/cosec theta - cot theta = cosec theta + cot theta
Answers
Answered by
81
Question:
Solution:
Multiplying the numerator and denominator by the conjugate of (cosecθ - cotθ) i.e, (cosecθ + cotθ) we get,
Hence Proved.
Answered by
73
ExplanaTion:
Refer to the attachment.
Some formulas related trigonometry :
- Cosec²A - Cot²A = 1
- Sec²A - tan²A = 1
- sin²A + cos²A = 1
- 1/cosecA = sinA
- SinA = 1/CosecA
- CotA = 1/tanA
- tanA = 1/CotA
- cosA = 1/SecA
- SecA = 1/CosA
- SinA = cos(90-A)
- CosA = Sin(90-A)
- SecA = cosec(90-A)
- CosecA = sec(90-A)
- cotA = tan(90-A)
- tanA = cot(90-A)
Attachments:
Similar questions