Math, asked by vickyaicky8474, 10 months ago

Prove that 1/cosec theta - cot theta = cosec theta + cot theta

Answers

Answered by Tomboyish44
81

Question:

\sf Prove \ that: \ \dfrac{1}{cosec\theta - cot\theta} = cosec\theta + cot\theta

Solution:

\longmapsto \  \sf LHS = \dfrac{1}{cosec\theta - cot\theta}\\ \\

Multiplying the numerator and denominator by the conjugate of (cosecθ - cotθ) i.e, (cosecθ + cotθ) we get,

\longmapsto \ \sf LHS = \dfrac{1}{cosec\theta - cot\theta} \times \dfrac{\left(cosec\theta + cot\theta\right)}{\left(cosec\theta + cot\theta\right)}\\ \\ \\ \\\longmapsto \ \sf LHS = \dfrac{cosec\theta + cot\theta}{\left(cosec\theta - cot\theta\right) \left(cosec\theta + cot\theta\right)}\\ \\ \\ \\\sf Using \ the \ identity \ (a + b)(a - b) = a^2 - b^2 we get,\\ \\ \\ \\\longmapsto \ \sf LHS = \dfrac{cosec\theta + cot\theta}{cosec^2\theta - cot^2\theta}\\ \\ \\ \\

\\

\sf Using \ the \ identity \ cosec^2\theta - cot^2\theta = 1 \ we \ get,\\ \\ \\ \\\longmapsto \ \sf LHS = \dfrac{cosec\theta + cot\theta}{1}\\ \\ \\ \\\longmapsto \ \sf LHS = cosec\theta + cot\theta\\ \\ \\ \\\longmapsto \sf \ \underline{\underline{LHS = RHS}}

Hence Proved.

Answered by Anonymous
73

ExplanaTion:

Refer to the attachment.

Some formulas related trigonometry :

  • Cosec²A - Cot²A = 1

  • Sec²A - tan²A = 1

  • sin²A + cos²A = 1

  • 1/cosecA = sinA

  • SinA = 1/CosecA

  • CotA = 1/tanA

  • tanA = 1/CotA

  • cosA = 1/SecA

  • SecA = 1/CosA

  • SinA = cos(90-A)

  • CosA = Sin(90-A)

  • SecA = cosec(90-A)

  • CosecA = sec(90-A)

  • cotA = tan(90-A)

  • tanA = cot(90-A)

Attachments:
Similar questions