Math, asked by blah62, 9 months ago

prove that 1/cosecA+cot A -1/sinA=1/cosecA-cotA​

Answers

Answered by Anonymous
1

Step-by-step explanation:

LHS-

√(1+cosA)/√(1-cosA)

Multiplying with √(1+cosA) on both numerator and denominator, we have,

={√(1+cosA)*√(1+cosA)}/{√(1-cosA)*√(1+cosA)}

=[√{(1+cosA)*(1+cosA)}]/[√{(1-cosA)*(1+cosA)}]

={√(1+cosA)²}/{√(1²-cos²A)}

=(1+cosA)/√(sin²A)

=(1+cosA)/sinA

=(1/sinA)+(cosA/sinA)

=cosecA + cotA

Hence proved…

Answered by svbammu
1

Answer:

LHS= 1/(cosecA-cotA)-1/sinA

= 1/(cosecA-cotA)×(cosecA+cotA)/(cosecA+cotA)-1/sinA

= (cosecA+cotA)/cosec^2A-cot^2)-cosecA

= (cosecA+cotA)-cosecA

= cotA

RHS= 1/sinA-1/(cosecA +cotA)

= cosecA-1/cosecA+cotA)×(cosecA-cotA)/(cosecA-cotA)

= cosecA -(cosecA-cotA)/(cosec^2A-cot^2A)

= cosecA-(cosecA-cotA)

=cotA. [ cosec^2 A-cot^2=1]

LHS = RHS.

Similar questions