Prove that :- 1+cosecA-cotA/1+cosecA+cotA=1-cosA/sinA
Answers
Answered by
1
Step-by-step explanation:
(1+cosecA-cotA)/(1+cosecA+cotA)=1-cosA/sinA
let's we take LHS,
We convert cosecA and cotA into sinA and cosA
so, (1+1/sinA-cosA/sinA)/(1+1/sinA+cosA/sinA)
after taking LCM sinA get cancelled out
so (sinA+1-cosA)/(sinA+1+cosA)
now we multiple and divide by 1-cosA
(sinA+1-cosA)/(sinA+1+cosA)×(1-cosA)/(1-cosA)
multiple both the denominators
(sinA+1-cosA)(1-cosA)/(sinA+1+cosA-sinAcosA-cosA-cos²A)
now we put 1-cos²A=sin²A,
(sinA+1-cosA)(1-cosA)/(sin²A+sinA-sinAcosA)
now take sinA common from denominator
(sinA+1-cosA)(1-cosA)/sinA(sinA+1-cosA)
now we get our answer (1-cosA)/sinA
HOPE YOU LIKE MY ANSWER
Answered by
0
Similar questions