Math, asked by Bhumikamungre3, 4 months ago

Prove that: (1/cosecA-cotA) - (1/sinA) = (1/sinA) - (1/cosecA+cotA)​

Answers

Answered by ShírIey
13

Prove that:

⠀⠀⠀⠀⠀⠀

\sf \bigg(\dfrac{1}{cosec\;A - cot\; A}\bigg) - \bigg(\dfrac{1}{sin\;A}\bigg) = \bigg(\dfrac{1}{sin\;A}\bigg) - \bigg(\dfrac{1}{cosec\;A + cot \;A}\bigg)

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{Taking\; LHS\: :}}⠀⠀⠀⠀

:\implies\sf \dfrac{1}{ \frac{1}{sin\;A} - \frac{cos\;A}{sin\;A}} - \dfrac{1}{sinA} \\\\\\:\implies\sf \dfrac{sin\; A}{1 -\; cosA} - \dfrac{1}{sin\; A} \\\\\\:\implies\sf  \dfrac{sin^2\;A - 1 - cos \; A}{sin\; A(1 - cos \; A)}\\\\\\:\implies\sf \dfrac{\cancel{\:1} - cos^2\; A  -\:\cancel{\;1} - cos\; A}{sin\; A(1 - cos\; A)}\\\\\\:\implies\sf  \dfrac{cos\; A  \:  \;\cancel{(1 - cos \; A)}}{sin\; A\: \:   \cancel{1 - cos\; A}}\\\\\\:\implies\bf\pink{Cot \; A \:  \:  \:  \:  \:  \:  \:  \:  \: \qquad\bigg\lgroup\sf \because \dfrac{cos\;A}{sin\;A} = Cot \; A \; \bigg\rgroup}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{Now,\; taking \; RHS \: :}}⠀⠀⠀⠀

:\implies\sf \dfrac{1}{sin\;A} - \dfrac{1}{cosec\;A + cot\; A}\\\\\\:\implies\sf \dfrac{1}{sin\;A} - \dfrac{1}{\frac{1}{sin\;A} + \frac{cos\; A}{sin\; A}} \\\\\\:\implies\sf  \dfrac{1}{sin\; A} - \dfrac{sin\; A}{ 1 + cos\; A}\\\\\\:\implies\sf  \dfrac{1 + cos\;A - sin^2\;A}{sin\; A(1 + cos\; A)}\\\\\\:\implies\sf \dfrac{\cancel{\;1} + cos\; A - \;\cancel{\;1} + cos^2 \; A}{sin\; A(1 + cos\;A)}\\\\\\:\implies\sf\dfrac{cos\;A \;\cancel{(1 + cos\;A)}}{sin\;A\:\cancel{1 + cos\; A}}\\\\\\:\implies\sf\dfrac{cos\;A}{sin\;A}\\\\\\:\implies\bf\pink{Cot\; A \:  \:  \:  \:  \:  \:  \:  \: \qquad\bigg\lgroup\sf \because \dfrac{cos\;A}{sin\;A} = Cot \; A \; \bigg\rgroup}

⠀⠀⠀⠀⠀\therefore LHS = RHS; Hence Proved!

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀⠀⠀

\bigstar\:\sf Trigonometric\:Values :\\\begin{tabular}{|c|c|c|c|c|c|}\cline{1-6}Radians/Angle & 0 & 30 &45 &60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} &1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}& Not D$\hat{e}$fined \\\cline{1-6}\end{tabular}⠀⠀

Answered by IamSameerhii
23

\huge\cal{\underline{\underline{\bigstar\:Question:-}}}

⠀⠀⠀⠀⠀⠀

\sf \bigg(\dfrac{1}{cosec\;A - cot\; A}\bigg) - \bigg(\dfrac{1}{sin\;A}\bigg) = \bigg(\dfrac{1}{sin\;A}\bigg) - \bigg(\dfrac{1}{cosec\;A + cot \;A}\bigg)

⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀

\huge\cal{\underline{\underline{\bigstar\:Answer:-}}}

\underline{\bf{\dag} \:\mathfrak{Taking\;\sf{LHS}\: :}}

⠀⠀⠀⠀

:\implies\sf \dfrac{1}{ \frac{1}{sin\;A} - \frac{cos\;A}{sin\;A}} - \dfrac{1}{sinA} \\\\\\:\implies\sf \dfrac{sin\; A}{1 -\; cosA} - \dfrac{1}{sin\; A} \\\\\\:\implies\sf \dfrac{sin^2\;A - 1 - cos \; A}{sin\; A(1 - cos \; A)}\\\\\\:\implies\sf \dfrac{\cancel{\:1} - cos^2\; A -\:\cancel{\;1} - cos\; A}{sin\; A(1 - cos\; A)}\\\\\\:\implies\sf \dfrac{cos\; A \: \;\cancel{(1 - cos \; A)}}{sin\; A\: \: \cancel{1 - cos\; A}}\\\\\\:\implies\bf\pink{Cot \; A \: \: \: \: \: \: \: \: \: \qquad\bigg\lgroup\sf \because \dfrac{cos\;A}{sin\;A} = Cot \; A \; \bigg\rgroup}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{Now,\; taking \; \sf{RHS} \: :}}

⠀⠀⠀⠀

:\implies\sf \dfrac{1}{sin\;A} - \dfrac{1}{cosec\;A + cot\; A}\\\\\\:\implies\sf \dfrac{1}{sin\;A} - \dfrac{1}{\frac{1}{sin\;A} + \frac{cos\; A}{sin\; A}} \\\\\\:\implies\sf \dfrac{1}{sin\; A} - \dfrac{sin\; A}{ 1 + cos\; A}\\\\\\:\implies\sf \dfrac{1 + cos\;A - sin^2\;A}{sin\; A(1 + cos\; A)}\\\\\\:\implies\sf \dfrac{\cancel{\;1} + cos\; A - \;\cancel{\;1} + cos^2 \; A}{sin\; A(1 + cos\;A)}\\\\\\:\implies\sf\dfrac{cos\;A \;\cancel{(1 + cos\;A)}}{sin\;A\:\cancel{1 + cos\; A}}\\\\\\:\implies\sf\dfrac{cos\;A}{sin\;A}\\\\\\:\implies\bf\pink{Cot\; A \: \: \: \: \: \: \: \: \qquad\bigg\lgroup\sf \because \dfrac{cos\;A}{sin\;A} = Cot \; A \; \bigg\rgroup}

⠀⠀⠀⠀⠀\bf\underline{\therefore Hence\:Proved!!}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀♪••••••⠀⠀⠀⠀⠀

Similar questions